206 research outputs found

    Fractal Complexity in Spontaneous EEG Metastable-State Transitions: New Vistas on Integrated Neural Dynamics

    Get PDF
    Resting-state EEG signals undergo rapid transition processes (RTPs) that glue otherwise stationary epochs. We study the fractal properties of RTPs in space and time, supporting the hypothesis that the brain works at a critical state. We discuss how the global intermittent dynamics of collective excitations is linked to mentation, namely non-constrained non-task-oriented mental activity

    Psychological intervention measures during the COVID-19 pandemic

    Get PDF
    The health emergency we are experiencing due to the spread of the COVID-19 disease has strongly influenced the psychological and physical health of the general population, including the health care professionals. The aim of this brief article is a preliminary analysis of the psychological interventions following the infectious disease outbreak in order to 1) implement guidelines for the existing emerging psychological crisis for people directly and indirectly affected by COVID-19, and 2) establish adequate procedures and prompt responses

    Enhancing Qualities of Consciousness during Online Learning via Multisensory Interactions

    Get PDF
    Online-learning is a feasible alternative to in-person attendance during COVID-19 pan- demic. In this period, information technologies have allowed sharing experiences, but have also highlighted some limitations compared to traditional learning. Learning is strongly supported by some qualities of consciousness such as flow (intended as the optimal state of absorption and engagement activity) and sense of presence (feeling of exerting control, interacting with and get- ting immersed into real/virtual environments), behavioral, emotional, and cognitive engagement, together with the need for social interaction. During online learning, feelings of disconnection, social isolation, distractions, boredom, and lack of control exert a detrimental effect on the ability to reach the state of flow, the feeling of presence, the feeling of social involvement. Since online environments could prevent the rising of these learning–supporting variables, this article aims at describing the role of flow, presence, engagement, and social interactions during online sessions and at characterizing multisensory stimulations as a driver to cope with these issues. We argue that the use of augmented, mixed, or virtual reality can support the above-mentioned domains, and thus counteract the detrimental effects of physical distance. Such support could be further increased by enhancing multisensory stimulation modalities within augmented and virtual environme

    Fast regulation of vertical squat jump during push-off in skilled jumpers

    Get PDF
    The height of a maximum Vertical Squat Jump (VSJ) reflects the useful power produced by a jumper during the push-off phase. In turn this partly depends on the coordination of the jumper's segmental rotations at each instant. The physical system constituted by the jumper has been shown to be very sensitive to perturbations and furthermore the movement is realized in a very short time (ca. 300 ms), compared to the timing of known feedback loops. However, the dynamics of the segmental coordination and its efficiency in relation to energetics at each instant of the push-off phase still remained to be clarified. Their study was the main purpose of the present research. Eight young adult volunteers (males) performed maximal VSJ. They were skilled in jumping according to their sport activities (track and field or volleyball). A video analysis on the kinematics of the jump determined the influence of the jumpers' segments rotation on the vertical velocity and acceleration of the body mass center (MC). The efficiency in the production of useful power at the jumpers' MC level, by the rotation of the segments, was measured in consequence. The results showed a great variability in the segmental movements of the eight jumpers, but homogeneity in the overall evolution of these movements with three consecutive types of coordination in the second part of the push-off (lasting roughly 0.16 s). Further analyses gave insights on the regulation of the push-off, suggesting that very fast regulation(s) of the VSJ may be supported by: (a) the adaptation of the motor cerebral programming to the jumper's physical characteristics; (b) the control of the initial posture; and (c) the jumper's perception of the position of his MC relative to the ground reaction force, during push-off, to reduce energetic losses

    Moving Auto-Correlation Window Approach for Heart Rate Estimation in Ballistocardiography Extracted by Mattress-Integrated Accelerometers

    Get PDF
    Continuous heart monitoring is essential for early detection and diagnosis of cardiovascular diseases, which are key factors for the evaluation of health status in the general population. Therefore, in the future, it will be increasingly important to develop unobtrusive and transparent cardiac monitoring technologies for the population. The possible approaches are the development of wearable technologies or the integration of sensors in daily-life objects. We developed a smart bed for monitoring cardiorespiratory functions during the night or in the case of continuous monitoring of bedridden patients. The mattress includes three accelerometers for the estimation of the ballistocardiogram (BCG). BCG signal is generated due to the vibrational activity of the body in response to the cardiac ejection of blood. BCG is a promising technique but is usually replaced by electrocardiogram due to the difficulty involved in detecting and processing the BCG signals. In this work, we describe a new algorithm for heart parameter extraction from the BCG signal, based on a moving auto-correlation sliding-window. We tested our method on a group of volunteers with the simultaneous co-registration of electrocardiogram (ECG) using a single-lead configuration. Comparisons with ECG reference signals indicated that the algorithm performed satisfactorily. The results presented demonstrate that valuable cardiac information can be obtained from the BCG signal extracted by low cost sensors integrated in the mattress. Thus, a continuous unobtrusive heart-monitoring through a smart bed is now feasible

    Gender differences on psychological factors in fibromyalgia: a systematic review on male’s experience

    Get PDF
    Objectives: Fibromyalgia (FM) is highly prevalent in female gender. Scarce attention has been given to the exploration and description of this syndrome, from a psychological point of view, when occurring in males. The aim of the present study is to develop further knowledge, and to summarise the literature regarding subjective psychological experience, characteristics of symptoms presentation (both onset and development), and treatment options for FM in male patients, in order to highlight differences with FM in females. Methods: All studies published between January 1993 and February 2020 using PubMed and PsycInfo were included, provided that they met the following criteria: 1) written in English; 2) original articles on studies with a longitudinal design; 3) prospective or retrospective, observational (analytical or descriptive), experimental or quasi-experimental, controlled or noncontrolled studies. Reviews and nonoriginal articles (i.e, editorials, Letters to the Editor, and book chapters) were not included. We utilised the following keywords: (male), (female), (fibromyalgia), combined with Boolean operators 'AND' and 'NOT'. Results: We found an initial number of 55 papers. Duplicated records were excluded (n=13), as well as papers not focusing on male patients or not fulfilling inclusion criteria (n=25), narrowing the research to 17 papers. Conclusions: FM male patients consider their masculine identity as inefficiently re-negotiated after symptoms' onset. FM males tend to endure pain for longer periods of time than females before seeking for treatment; bodily symptoms are prevalent with a compromised exploration of feelings about FM. Unfortunately, there is still paucity of evidence on clinical characterisation and treatment options when FM occurs in males. Moreover, no studies addressed the issue of the psychopharmacological/non-pharmacological management of males with FM and comorbid psychiatric syndromes

    Neurological complications of covid-19 and possible neuroinvasion pathways: A systematic review

    Get PDF
    The Coronavirus Disease 2019 (COVID-19) outbreak has shocked the whole world with its unexpected rapid spread. The virus responsible for the disease, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), enters host cells by means of the envelope spike protein, which binds to angiotensin-converting enzyme 2 receptors. These receptors are highly expressed in heart, lungs, respiratory tract epithelium, endothelial cells and brain. Since an increasing body of significant evidence is highlighting a possible neuroinvasion related to SARS-CoV-2, a state of the art on the neurological complications is needed. To identify suitable publications, our systematic review was carried out by searching relevant studies on PubMed and Scopus databases. We included studies investigating neurologic manifestations of SARS-CoV-2 in patients over 18. According to the analyzed studies, the most frequent disorders affecting central nervous system (CNS) seem to be the following: olfactory and taste disorders, ischemic/hemorrhagic stroke, meningoencephalitis and encephalopathy, including acute necrotizing encephalopathy, a rare type of encephalopathy. As regards the peripheral nervous system (PNS), Guillain-Barré and Miller Fisher syndromes are the most frequent manifestations reported in the literature. Important clinical information on the neurological manifestations of SARS-CoV-2 would help clinicians raise awareness and simultaneously improve the prognosis of critically ill patients

    Scaling and intermittency of brain events as a manifestation of consciousness

    Get PDF
    We discuss the critical brain hypothesis and its relationship with intermittent renewal processes displaying power-law decay in the distribution of waiting times between two consecutive renewal events. In particular, studies on complex systems in a "critical" condition show that macroscopic variables, integrating the activities of many individual functional units, undergo fluctuations with an intermittent serial structure characterized by avalanches with inverse-power-law (scale-free) distribution densities of sizes and inter-event times. This condition, which is denoted as "fractal intermittency", was found in the electroencephalograms of subjects observed during a resting state wake condition. It remained unsolved whether fractal intermittency correlates with the stream of consciousness or with a non-task-driven default mode activity, also present in non-conscious states, like deep sleep. After reviewing a method of scaling analysis of intermittent systems based of event-driven random walks, we show that during deep sleep fractal intermittency breaks down, and re-establishes during REM (Rapid Eye Movement) sleep, with essentially the same anomalous scaling of the pre-sleep wake condition. From the comparison of the pre-sleep wake, deep sleep and REM conditions we argue that the scaling features of intermittent brain events are related to the level of consciousness and, consequently, could be exploited as a possible indicator of consciousness in clinical applications

    Sleep slow oscillations favour local cortical plasticity underlying the consolidation of reinforced procedural learning in human sleep

    Get PDF
    We investigated changes of slow-wave activity and sleep slow oscillations in the night following procedural learning boosted by reinforcement learning, and how these changes correlate with behavioural output. In the Task session, participants had to reach a visual target adapting cursor's movements to compensate an angular deviation introduced experimentally, while in the Control session no deviation was applied. The task was repeated at 13:00 hours, 17:00 hours and 23:00 hours before sleep, and at 08:00 hours after sleep. The deviation angle was set at 15° (13:00 hours and 17:00 hours) and increased to 45° (reinforcement) at 23:00 hours and 08:00 hours. Both for Task and Control nights, high-density electroencephalogram sleep recordings were carried out (23:30-19:30 hours). The Task night as compared with the Control night showed increases of: (a) slow-wave activity (absolute power) over the whole scalp; (b) slow-wave activity (relative power) in left centro-parietal areas; (c) sleep slow oscillations rate in sensorimotor and premotor areas; (d) amplitude of pre-down and up states in premotor regions, left sensorimotor and right parietal regions; (e) sigma crowning the up state in right parietal regions. After Task night, we found an improvement of task performance showing correlations with sleep slow oscillations rate in right premotor, sensorimotor and parietal regions. These findings suggest a key role of sleep slow oscillations in procedural memories consolidation. The diverse components of sleep slow oscillations selectively reflect the network activations related to the reinforced learning of a procedural visuomotor task. Indeed, areas specifically involved in the task stand out as those with a significant association between sleep slow oscillations rate and overnight improvement in task performance
    • …
    corecore